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Abstract—A new boundary element formulation is presented
for the electromagnetic analysis of interconnects in layered media,
which accurately captures skin effect in conductors of arbitrary
shape and size. Results show superior CPU-time and memory
performance compared to several state-of-the-art techniques.

Index Terms—Surface integral equations, layered media, lossy
conductors

I. INTRODUCTION

The accurate electromagnetic modeling of skin effect over a
broad frequency range is essential in the design of integrated
circuits, for the quantification of signal integrity phenomena
in high-speed on-chip interconnects. Volume-based numeri-
cal methods, such as the finite element method (FEM) [1]
or volume integral equations [2], require an extremely fine
volumetric mesh for the structure to resolve the small skin
depth at high frequencies, which is expensive. The boundary
element method (BEM) is an appealing alternative, since it
requires only a surface-based discretization of the objects in
the structure [3].

Conductor modeling with the BEM requires formulating
an interior problem to capture the skin effect inside objects,
and an exterior problem to model coupling between them.
The generalized impedance boundary condition (GIBC) [4] is
an accurate and well-conditioned formulation for skin effect
modeling, but requires both single- and double-layer potential
operators [3] for the exterior problem. The computation of
both operators is expensive for objects embedded in layered
media, since the expensive multilayer Green’s function and its
curl are both required [5]. Multi-region formulations like [6]
suffer from the same drawback, and also require expensive
dual basis functions to achieve good conditioning [7].

A single-layer impedance matrix (SLIM) formulation was
recently proposed [8]. The SLIM method is formulated in
terms of a single source [9] and does not require the double-
layer potential operator for the exterior problem, and therefore
avoids the computational and implementation costs associated
with the curl of the MGF. Unlike preceding single-source
formulations [10], the SLIM method is well conditioned even
without dual basis functions [8]. However, the SLIM approach
requires factorizing two dense matrices per object, which is
only feasible for small objects.
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In this work, an accelerated SLIM formulation is proposed,
which avoids the assembly and factorization of dense matrices
in the interior problem and allows handling large objects
efficiently. This is achieved with the use of an object-wise
adaptive integral method (AIM) [11] to accelerate matrix-
vector products associated to the interior problem [12].

II. PROPOSED FORMULATION

We consider a homogeneous object bounded by a surface S
with outward unit normal vector n̂. The object has permittivity
ε′, conductivity σ, and ε , ε′− jσ/ω, where ω is the cyclical
frequency. A triangular mesh is generated for S. The object
is embedded in a layered medium, where the lth layer has
permittivity εl and permeability µl.

A. Interior Problem

1) Original Configuration: The tangential electric and mag-
netic fields on S are related via the magnetic field integral
equation (MFIE) [3], which is discretized and tested using
RWG and n̂× RWG basis functions [3], respectively, to get
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where the entries of matrices L and K may be found in
literature [3], and involve the homogeneous Green’s function
of the object’s material. Matrix I× is the identity operator
obtained when RWG functions are tested with n̂ × RWG
functions. Column vectors E and H contain the coefficients
of the basis functions associated with the tangential electric
and magnetic fields, respectively. Vector E can be expressed
in terms of H with a rearrangement of (1),
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where Z may be interpreted as the surface impedance operator
associated to the object [4].

2) Equivalent Configuration: Next, we use the surface
equivalence principle to replace the conductive object with the
background material in which it resides, while requiring that
the tangential electric field remains unchanged for ~r ∈ S [9].
An equivalent electric current density, J∆ = H −Heq, must
be introduced on S to keep fields exterior to S unchanged,



where Heq is the discretized tangential magnetic field on S
in the equivalent configuration.

In the equivalent configuration, the fields tangental to S
can also be related via the discretized electric field integral
equation (EFIE) [3]
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where Ll and Kl involve the homogeneous Green’s function
of the medium just outside S. The equivalent tangential
magnetic field Heq may be expressed in terms of E with a
rearrangement of (3),
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where Yeq may be interpreted as the surface admittance
operator of the object filled with the surrounding medium [10].

B. Exterior Problem

The augmented EFIE (AEFIE) [13] is employed to model
the exterior problem over a broad frequency range. The
discretized charge density ρ∆ associated to J∆ is introduced
as an additional unknown [13] to yield
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where L(A)
m and L(φ)

m are, respectively, the discretized vector
and scalar potential parts of the single-layer operator for the
exterior problem, and involve the MGF. Column vector Einc

is related to the incident electric field. Quantities k0, η0, and
c0 are, respectively, the wave number, wave impedance, and
speed of light in free space. Definitions of the sparse matrices
D and B may be found in [13].

Equations (2), (4) and the definition of J∆ are then used in
(5) to obtain the final system of equations[
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of (6) is the discretized continuity equation relating J∆ and
ρ∆ [13]. Matrix F is defined in [13], and I is the identity
matrix. Equation (6) is the SLIM formulation [8], which is
well-conditioned and avoids the double-layer potential opera-
tor for the exterior problem, unlike the GIBC [4]. To solve (6)
iteratively, the matrix-vector products involving L(A)

m and L(φ)
m

are accelerated with a multilayer AIM [14].

C. Accelerated Modeling of the Interior Problem

Solving (6) iteratively requires computing the two following
matrix-vector products at each iteration k:
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For large objects, the matrix inversions in (7) and (8) are not
feasible. Instead, with a rearrangement of the matrices to be
inverted, (7) and (8) are written in the form of two systems
of equations,
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Since systems (9) and (10) are “nested” into (6), their solution
must be computed at every iteration k, and can seriously
burden CPU time. To avoid this bottleneck, we propose an
efficient preconditioning and solution strategy for (9) and (10).
The AIM is used to accelerate all matrix-vector products
involving L, K, Leq and Keq. An independent AIM grid is
generated for each object [12]. We can write A ≈ ANR+AFR,
where A ∈ {L,K,Leq,Keq}, ANR is sparse and contains
the near-region entries of A which have been pre-corrected to
account for the AIM grid contributions [15], and AFR contains
far-region interactions. Matrix-vector products involving AFR

are computed with the fast Fourier transform (FFT) [15]. The
near-region entries of L and Leq are used as preconditioners
for the efficient solution of (9) and (10), respectively. The
proposed acceleration scheme allows the BEM method to
capture all electromagnetic phenomena inside conductors, both
small and large, in an efficient, accurate and broadband way.

III. RESULTS

We consider two examples: an on-chip inductor coil [15],
and a portion of an interposer with 80 copper signal lines and a
large ground plane (courtesy of Dr. Rubaiyat Islam, Advanced
Micro Devices). Both structures are embedded in a dielectric
substrate (εr = 2.1 and 4, respectively) backed by a silicon
layer, with an infinite ground plane. The geometry and electric
surface current densities are shown for the inductor and the
interposer in the top panels of Fig. 1 and Fig. 2, respectively.

For the inductor, the proposed accelerated SLIM method
is compared against the DSA [10], GIBC [4] and SLIM [8]
formulations, which all require the factorization of some dense
matrices for the interior problem. Results are also compared
against a commercial finite element solver, Ansys HFSS. The
scattering parameters in Fig. 1 confirm the accuracy of the
proposed method. Table I shows that the proposed method is
1.5–16× faster than all other methods, and among the most
memory-efficient. The SLIM formulation also requires, on
average, 31× fewer iterations than the DSA method.

For the interposer, the proposed method is compared to
HFSS, and to a recently-proposed accelerated GIBC formula-
tion [12], where matrix factorizations in the interior problem
are avoided. A comparison against DSA [10], GIBC [4] was
not feasible within the available 256GB of memory, since
objects are large. Similarly, HFSS was not able to accurately
resolve skin effect beyond roughly 30GHz without going out
of memory, so a coarser mesh had to be used. The coarse HFSS
mesh has 2–4 volume elements spanning the conductor cross
section, while the skin depth becomes over 10× smaller than



TABLE I: Performance comparison for the examples in Section III, on a 3GHz Intel Xeon CPU, single-threaded.

Inductor (4,470 triangles) Interposer (156,820 triangles)
22 frequency points 31 frequency points

HFSS DSA [10] GIBC [4] SLIM [8] Proposed HFSS HFSS (coarse) Accel. GIBC [12] Proposed

Total CPU time (hours) 2.5 10.2 1.0 4.1 0.6 N/A 41.0 212.1 104.4
Peak memory (GB) 16.7 7.2 1.0 6.8 1.2 > 256 189.2 30.5 28.3
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Fig. 1: Top panel: geometry of the inductor in Section III, with
the electric surface current density at 100MHz. Bottom panel:
comparison of scattering parameters.

the cross sectional dimensions. The scattering (S) parameters
reported in the bottom panel of Fig. 2 show good agree-
ment between the two BEM approaches and HFSS. The S
parameters from HFSS become increasingly inaccurate at high
frequency due to the shrinking skin depth. Table I confirms that
the proposed method is faster than the accelerated GIBC by a
factor of over 2×, since the double-layer potential is avoided
in the exterior problem. Though HFSS is faster in this case, its
accuracy is limited by the 6.7× larger memory requirement.
In conclusion, the numerical examples considered demonstrate
that the proposed method can efficiently model large realistic
lossy conductors in layered media, thanks to an object-wise
application of the AIM, and is significantly more efficient than
representative state-of-the-art BEM and FEM techniques.

REFERENCES

[1] J.-M. Jin, The Finite Element Method in Electromagnetics. IEEE Press,
2014.

[2] A. E. Ruehli and G. Antonini and L. Jiang, Circuit Oriented Electro-
magnetic Modeling Using the PEEC Techniques. IEEE Press, 2017.

[3] W. C. Gibson, The Method of Moments in Electromagnetics. CRC
press, 2014.

[4] Z. G. Qian, W. C. Chew, and R. Suaya, “Generalized Impedance Bound-
ary Condition for Conductor Modeling in Surface Integral Equation,”
IEEE Trans. Microw. Theory Tech., vol. 55, no. 11, pp. 2354–2364,
Nov. 2007.

[5] K. A. Michalski and J. R. Mosig, “Multilayered Media Green’s Func-
tions in Integral Equation Formulations,” IEEE Trans. Antennas Propag.,
vol. 45, no. 3, pp. 508–519, Mar 1997.

[6] T. Xia, H. Gan, M. Wei, W. C. Chew, H. Braunisch, Z. Qian, K. Aygün,
and A. Aydiner, “An Integral Equation Modeling of Lossy Conductors

108 109 1010

f (Hz)

−25

−20

S
11

(d
B

)

S11

S12

S11

S12

S11

S12

−3

−2

−1

S
12

(d
B

)

HFSS (coarse)

Accel. GIBC [12]

Proposed

Fig. 2: Top panel: geometry of the interconnect network in
Section III, with the electric surface current density at 1GHz.
Bottom panel: comparison of scattering parameters.

With the Enhanced Augmented Electric Field Integral Equation,” IEEE
Trans. Antennas Propag., vol. 65, no. 8, pp. 4181–4190, Aug 2017.

[7] A. Buffa and S. H. Christiansen, “A Dual Finite Element Complex on
the Barycentric Refinement,” Mathematics of Computation, vol. 76, pp.
1743–1769, 2007.

[8] S. Sharma and P. Triverio, “SLIM: A Well-Conditioned Single-Source
Boundary Element Method for Modeling Lossy Conductors in Layered
Media,” IEEE Antennas Wireless Propag. Lett., 2020 (submitted, arXiv:
2007.07378).

[9] M. Huynen, K. Y. Kapusuz, X. Sun, G. Van der Plas, E. Beyne, D. De
Zutter, and D. Vande Ginste, “Entire Domain Basis Function Expansion
of the Differential Surface Admittance for Efficient Broadband Charac-
terization of Lossy Interconnects,” IEEE Trans. Microw. Theory Tech.,
pp. 1–17, 2020.

[10] U. R. Patel, S. Sharma, S. Yang, S. V. Hum, and P. Triverio, “Full-Wave
Electromagnetic Characterization of 3D Interconnects Using a Surface
Integral Formulation,” in IEEE EPEPS, San Jose, CA, Oct. 2017.

[11] E. Bleszynski, M. Bleszynski, and T. Jaroszewicz, “AIM: Adaptive
Integral Method for Solving Large-Scale Electromagnetic Scattering and
Radiation Problems,” Radio Science, vol. 31, no. 5, pp. 1225–1251,
1996.

[12] S. Sharma and P. Triverio, “A Fully-Accelerated Surface Integral Equa-
tion Method for the Electromagnetic Modeling of Arbitrary Objects,”
IEEE Trans. Antennas Propag., 2020 (submitted, arXiv: 2003.11679).

[13] Z.-G. Qian and W. C. Chew, “Fast Full-Wave Surface Integral Equa-
tion Solver for Multiscale Structure Modeling,” IEEE Trans. Antennas
Propag., vol. 57, no. 11, pp. 3594–3601, November 2009.

[14] S. Sharma, U. R. Patel, S. V. Hum, and P. Triverio, “A Complete
Surface Integral Method for Broadband Modeling of 3D Interconnects
in Stratified Media,” arXiv e-prints, p. arXiv: 1810.04030, Oct 2018.

[15] T. Moselhy, X. Hu, and L. Daniel, “pFFT in FastMaxwell: A Fast
Impedance Extraction Solver for 3D Conductor Structures over Sub-
strate,” in Proceedings of the Conference on Design, Automation and
Test, 2007.


