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Abstract—An efficient method for evaluating the multilayer
Green’s function is proposed, with application to interconnect
modeling with integral equations. A series expansion of Bessel
functions for near-field interactions provides demonstrated effi-
ciency in a realistic example.
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method, multilayer Green’s function

I. INTRODUCTION

The increasing complexity of embedded on-chip inter-
connects demands fast and accurate numerical solvers to
model their electromagnetic behavior. Although surface inte-
gral methods coupled with acceleration techniques, such as
the adaptive integral method (AIM) [1] and the fast multipole
method (FMM) [2] have been successful in modeling large
structures, the presence of surrounding stratified media greatly
increases the computational cost in general.

Analytical expressions are not available for the multi-
layer Green’s function (MGF), which involves semi-infinite
Sommerfeld-type integrals. These integrals must be evaluated
for every possible combination of source and observation
points on a given mesh. Direct numerical integration thus
leads to large computation times. A popular and efficient
technique for computing the MGF is the discrete complex
image method (DCIM) [3], in which a fitting technique
is used to approximate the MGF as a sum of exponential
factors, called images, that correspond to spherical waves. For
these factors, the Sommerfeld integral is known analytically.
However, the computational cost associated with this technique
is still significantly greater than the free space case, since
the number of images required may be as large as 10-15 for
realistic substrates used in integrated circuits.

More recently, series expansions have been proposed for
approximating the Green’s function more efficiently [4], [5].
In [4], the expansion is applied to the homogeneous Green’s
function for the partial element equivalent circuit method. The
method in [5] is for layered media, but requires interpolation
in addition to a series expansion, thus invoking two levels of
approximation.

When integral equation methods are coupled with acceler-
ation techniques such as AIM or FMM, reaction integrals are
computed in two different ways depending on the distance
between source and observation points. In the far field, an

approximation is used to enable quick computation using,
for example, a fast Fourier transform. In the near field,
such approximation is not valid, and Sommerfeld integrals
must be evaluated accurately. This computation can be very
time consuming for realistic structures, and often the main
bottleneck of the overall analysis.

In this work, we propose a new method to accelerate the
computation of the MGF for application to on-chip inter-
connects. We take advantage of the fact that only near-field
interactions need to be computed accurately. We apply a series
expansion of Bessel functions of first kind that appear in the
MGF, of orders 0 and 1. Coupled with the analytical addition
of quasistatic contributions, this leads to a significant speed-
up and predictable error-control as compared to DCIM, with
only one level of approximation and no interpolation. The
performance of this technique is demonstrated on a realistic
interconnect structure, and compared against DCIM and an
industry-standard finite element tool. Significant speed-up with
negligible change in accuracy is demonstrated.

II. FORMULATION

We consider expressions for the MGF proposed in formu-
lation C of [6], which consists of a dyadic term G and a
scalar term Gφ. However, it should be noted that the method
presented here is extensible to any valid formulation.

Assuming that the dielectric layers are stacked along the z
axis, the dyadic MGF can be written as

G =

Gxx 0 Gxz
0 Gyy Gyz
Gzx Gzy Gzz

 . (1)

Each component of G, as well as Gφ, has the form

Gl (k, r, r
′) =

∫ ∞
0

dkρJv (ρkρ) G̃l (kρ, z, z
′) kv+1

ρ . (2)

The function Jv (ρkρ) is the Bessel function of first kind
and order v, and G̃l (kρ, z, z

′) is the spectral MGF cor-
responding to Gl (k, r, r

′). Subscript l refers to any of
{xx, yy, zz, xz, yz, zx, zy, φ}. Quantity k is the wave number,
and kρ is the wave number in the lateral (xy) plane. Primed
and unprimed coordinates represent source and observation
points, respectively, and ρ =

√
(x− x′)2 + (y − y′)2. Bessel
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functions of order v = 0 are used for diagonal components
and for Gφ, while v = 1 for off-diagonal components.

Either type of Bessel function can be expanded as a Taylor
series centered at ρkρ = 0 [7],

Jv (ρkρ) = (0.5ρkρ)
v
∞∑
i=0

(
−0.25ρ2k2ρ

)i
i! (v + i)!

. (3)

This expansion allows us to write the Bessel function as a
product of terms that depend only on ρ, and terms that depend
only on the simulation frequency via kρ,

Jv (ρkρ) =

∞∑
i=0

ρv+2ikv+2i
ρ

(0.5)
v

(−0.25)
i

i! (v + i)!
. (4)

With this separation of terms, we can extract the summation
and ρ-dependent part out of the Sommerfeld integral after
substituting (4) into (2),

Gl (k, r, r
′) =

∞∑
i=0

ρv+2i (0.5)
v

(−0.25)
i

i! (v + i)!∫ ∞
0

dkρk
v+2i
ρ G̃l (kρ, z, z

′) kv+1
ρ . (5)

The integrand in (5) now only depends on the simulation
frequency and coordinates along the direction of stratification.
The Sommerfeld integral can thus be precomputed for a
predetermined set of z–z′ pairs, rather than every possible
combination of source and observation points. This is partic-
ularly advantageous for on-chip structures, which are often
much smaller along the direction of stratification than in the
lateral directions. To precompute these semi-infinite integrals,
we use the partition-extrapolation approach in [8].

It is known [9] that in the quasi-static limit, the MGF can be
written analytically in the spatial domain. These quasi-static
terms have a significant contribution in the near-field, and can
be leveraged to further improve the approximation. The spatial
domain quasi-static contribution can be expressed as a sum of
terms having the form

Gqs,i (k, r, r′) = Γi
e−jkγi(ρ,z,z

′)

γi (ρ, z, z′)
(6)

for diagonal components of the MGF, and

Gqs,i (k, r, r′) =
Γi
ρ

(
1− ζi (z, z′)

γi (ρ, z, z′)

)
(7)

for off-diagonal components. Quantity Γi is a Fresnel re-
flection coefficient for the ith quasi-static term, and depends
on layer properties. Term ζi is a linear combination of z
and z′ based on the source and observation layers, and
γi =

√
ρ2 + ζ2i . Detailed expressions can be found in [9].

We extract the corresponding quasi-static contributions in the
spectral domain prior to precomputing the integral in (5),
and add them back analytically as per (6) and (7). This
causes the spectral functions G̃l (kρ, z, z

′) to decay to 0
significantly faster along the real kρ axis, thus speeding up
the Sommerfeld integrals. Further, this precludes the need to

TABLE I
EXAMPLE IN SEC. III: PROPERTIES OF THE SUBSTRATE.

εr µr σ (S/m) Height (µm)

11.5 1.0 0.01 3
9.8 1.0 0.001 4
12.5 1.0 0.1 10
6.0 1.0 0.0001 9
4.4 1.0 0.0 4

Fig. 1. Interconnect network geometry.

sample G̃l (kρ, z, z′) for large values of kρ. Thus, the argument
of the Bessel functions, ρkρ, can be kept sufficiently small, to
ensure that the approximation in (4) is valid even for a small
number of expansion terms.

Compared to DCIM, the proposed method provides two
significant advantages:

1) In DCIM, it is typically not known a priori how many
images will be required to model a given layer configura-
tion. Complicated stack-ups may require in excess of 10–
15 images, and the matrix assembly cost is proportional
to this number. With the proposed series expansion,
however, the number of terms required is fixed and can
be as small as 2–3 for on-chip applications.

2) The series expansion allows for direct error control by
picking an appropriate number of expansion terms. In
DCIM, errors are controlled in an indirect way during
the fitting procedure, by retaining a heuristically-chosen
number of singular values during the SVD step.

III. NUMERICAL RESULTS

To demonstrate the proposed methodology, we consider
a network of 55 copper on-chip interconnects with a cross
section size of 1µm and conductor lengths of 150µm on
average. The geometry is shown in Fig. 1. The structure is
embedded in a stack-up shown in Table I. The layers are
bounded by free space above and below, and lossy dielectrics
are included for generality. All tests are performed on a
3.6 GHz desktop computer with 24 GB physical memory.

The interconnect network is simulated with the surface
integral approach proposed in [10], accelerated with AIM. The
differential surface admittance operator proposed in [11] is
utilized to model the skin effect in conductors. The proposed
series approximation is used to accelerate the near-field matrix
fill, while DCIM is employed for far-field interactions. The
scattering (S) parameters are extracted from 800 MHz to
40 GHz. For validation, we compare these results to the case
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Fig. 2. Ascending series approximation for GΦ, with quasistatic contribution.
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Fig. 3. Selected transmission (S11) and reflection (S12) parameters for a
four-port on-chip interconnect, compared with HFSS.

when DCIM is used for both the near-field and far-field
interactions. Additionally, we validate the results against a
commercial finite element tool, Ansys HFSS.

The scalar component of the MGF, along with contributions
of quasi-static terms and the series approximation, is plotted
in Fig. 2. Only the first two terms were used for the expansion
in (4). The vertical dashed lines indicate the smallest (min ρ),
largest (max ρ) and near-field (NF) distances relevant to the
geometry of the interconnect network. Similar or better results
were obtained for other MGF components, and are omitted
here for brevity. Clearly, the series expansion is sufficient for
use in the near-field region.

The S parameters obtained with the proposed technique are
shown in Fig. 3, and are in excellent agreement with both
DCIM and HFSS. In Table II, the CPU times for matrix fill are
reported for a representative frequency point (1 GHz), for the
proposed method and DCIM. Also reported is the CPU time
for precomputation of Sommerfeld integrals as well as DCIM.
Although the precomputation time is larger for the proposed
method, the matrix fill time is the bottleneck in general.
Subsequently, the 2.55× speed-up in matrix fill provided
by the proposed method yields a significant computational
advantage compared to DCIM. In the proposed method, the
near-field matrix fill takes only 38 % of the total time, while
with DCIM, the near-field part comprises 63 % of the total
time. The proposed method is thus a significant step towards

TABLE II
CPU TIMES FOR PROPOSED METHOD AND DCIM, FOR f = 1 GHZ.

Proposed DCIM Speed-up

Precomputation (min) 5.7 3.5 0.62x
Near-field interactions (min) 24.6 63.8 2.55x

ensuring that the near-field matrix fill is no longer a bottleneck
in the simulation of large, realistic structures.

IV. CONCLUSIONS

An efficient method to compute the multilayer Green’s
function in an integral equation context is described, based
on a series expansion of the Bessel function for near-field
interactions. The proposed method is suitable for on-chip
applications, as demonstrated in a realistic test case. In
addition to its robustness, direct error control and ease of
implementation, it provides a significant advantage over the
popular discrete complex image method (DCIM) in terms of
CPU time.
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